

Chapter 2: JavaScript for the Front End

Introduction
When you open a webpage, you see static content like text, images, and buttons. But how
does a webpage react when you click a button, fill out a form, or move your mouse over
something? This is where JavaScript comes into play. JavaScript is the programming
language that brings life to your webpage. It allows you to make your website interactive,
respond to users, and create dynamic content.

In this chapter, you will learn how JavaScript works on the front end – that is, the part of the
website that users interact with directly in their browser. We will cover everything you need to
start writing JavaScript, explain how it fits into your webpage, and show examples that
demonstrate its power.

By the end of this chapter, you will understand:

●​ What JavaScript is and why it's important for front-end development.​

●​ How to include JavaScript in a webpage.​

●​ Basic programming concepts in JavaScript (variables, data types, functions,
conditions, loops).​

●​ How JavaScript interacts with HTML elements to create interactivity.​

●​ The Document Object Model (DOM) and how JavaScript uses it.​

●​ Events and how to handle them.​

●​ Best practices for writing clean and efficient JavaScript code.​

Let's start from the very beginning!

1. What is JavaScript and Why Do We Need It?

What is JavaScript?

JavaScript is a programming language that runs in the browser. It can:

●​ Change the content of a webpage.​

●​ Respond to user actions like clicking buttons or typing in forms.​

●​ Animate elements or create interactive forms.​

●​ Communicate with servers without reloading the page (we’ll learn this in advanced
chapters).​

JavaScript works alongside HTML and CSS:

●​ HTML provides the structure of the webpage.​

●​ CSS styles the webpage (colors, fonts, layout).​

●​ JavaScript adds behavior to the webpage (interaction, animation, data validation).​

Why Do We Use JavaScript on the Front End?

Without JavaScript, a webpage is static. For example:

●​ Forms cannot validate input before submission.​

●​ Images cannot change when you click a button.​

●​ You cannot update content dynamically based on user actions.​

With JavaScript, you can:

●​ Validate form data before sending it.​

●​ Display notifications, pop-ups, or error messages.​

●​ Create interactive menus, sliders, or games.​

●​ Build Single Page Applications (SPA), where content loads dynamically without page
reloads.​

2. How to Include JavaScript in a Webpage

You can add JavaScript to your webpage in two main ways:

Method 1 – Inline JavaScript

You can add JavaScript directly inside HTML tags using the onclick, onchange, or other
event attributes. For example:

<button onclick="alert('Hello!')">Click Me</button>

Explanation:

●​ When the user clicks the button, the JavaScript alert() function shows a popup
with "Hello!".​

Though this works, it's not recommended for larger projects because it mixes structure and
behavior.

Method 2 – Internal JavaScript

You can include JavaScript inside the <script> tag in the HTML file:

<!DOCTYPE html>
<html>
<head>
 <title>My First JavaScript Page</title>
</head>
<body>
 <h1>Welcome to JavaScript!</h1>
 <button id="myButton">Click Me!</button>

 <script>
 document.getElementById("myButton").onclick = function() {
 alert("You clicked the button!");
 };
 </script>
</body>
</html>

Explanation:

●​ We select the button using its ID myButton.​

●​ We assign an event handler to run when the button is clicked.​

●​ The alert() function shows a message box.​

Method 3 – External JavaScript

For better organization, you can write JavaScript in a separate file:

index.html

<!DOCTYPE html>
<html>
<head>
 <title>External JavaScript Example</title>
</head>
<body>
 <h1>Hello JavaScript</h1>
 <button id="btn">Click Me</button>

 <script src="script.js"></script>
</body>
</html>

script.js

document.getElementById("btn").addEventListener("click", function() {
 alert("Button was clicked!");
});

Explanation:

●​ The JavaScript file is linked using the src attribute.​

●​ We use addEventListener() to handle events (more flexible than using
onclick).​

This method keeps your HTML clean and makes it easier to manage larger scripts.

3. JavaScript Basics: Syntax, Variables, and Data Types

Comments

Use comments to explain your code.

// This is a single-line comment

/*
This is a
multi-line comment
*/

Variables

Variables store data you want to use later. You can create a variable using let, const, or
var.

let name = "John"; // a string
const age = 25; // a constant number
var isStudent = true; // a boolean value

Explanation:

●​ let allows you to change the value later.​

●​ const makes the variable constant.​

●​ var is older and less recommended now but still works.​

Data Types

JavaScript supports several data types:

Data Type Example

String "Hello World"

Number 123, 3.14

Boolean true, false

Undefined let x;

Null let y = null;

Object {name: "John"}

Array [1, 2, 3, 4]

Example:

let message = "Welcome!";
let score = 100;
let isOnline = false;
let data;
let user = null;
let person = {firstName: "Alice", lastName: "Smith"};
let colors = ["red", "blue", "green"];

Operators

●​ Arithmetic Operators: +, -, *, /, %​

●​ Comparison Operators: ==, ===, !=, !==, >, <​

●​ Logical Operators: &&, ||, !​

Example:

let a = 10;
let b = 20;
console.log(a + b); // 30
console.log(a > b); // false
console.log(a === 10 && b === 20); // true

Functions

Functions are reusable blocks of code that perform tasks.

function greet(name) {
 console.log("Hello, " + name + "!");
}

greet("Alice"); // Output: Hello, Alice!
greet("Bob"); // Output: Hello, Bob!

Explanation:

●​ greet() is a function that takes one parameter, name.​

●​ The function prints a greeting using that parameter.​

Conditional Statements

You can use conditions to execute code based on certain rules.

let hour = 10;

if (hour < 12) {
 console.log("Good morning!");
} else if (hour < 18) {
 console.log("Good afternoon!");
} else {
 console.log("Good evening!");
}

Explanation:

●​ If hour is less than 12, it prints "Good morning".​

●​ If hour is between 12 and 18, it prints "Good afternoon".​

●​ Otherwise, it prints "Good evening".​

Loops

Loops repeat code multiple times.

For loop example:

for (let i = 1; i <= 5; i++) {
 console.log("Count is: " + i);
}

While loop example:

let count = 1;

while (count <= 5) {
 console.log("Count is: " + count);
 count++;
}

Explanation:

●​ Both loops print numbers from 1 to 5.​

4. JavaScript and HTML: The Document Object Model
(DOM)
The DOM is the bridge between JavaScript and HTML. It represents all the elements of the
webpage as objects that JavaScript can manipulate.

Accessing Elements

You can select elements in various ways:

let heading = document.getElementById("main-title");
let buttons = document.getElementsByClassName("btn");
let paragraphs = document.getElementsByTagName("p");
let firstButton = document.querySelector(".btn");
let allButtons = document.querySelectorAll(".btn");

Example HTML:

<h1 id="main-title">Welcome!</h1>
<button class="btn">Click 1</button>
<button class="btn">Click 2</button>
<p>This is a paragraph.</p>

Explanation:

●​ getElementById selects an element by its ID.​

●​ getElementsByClassName selects elements by their class.​

●​ getElementsByTagName selects elements by their tag name.​

●​ querySelector selects the first matching element.​

●​ querySelectorAll selects all matching elements.​

Changing Content
let heading = document.getElementById("main-title");
heading.textContent = "Hello, JavaScript!";

Explanation:

●​ The text inside the <h1> tag is changed dynamically.​

Changing Styles
let heading = document.getElementById("main-title");
heading.style.color = "blue";
heading.style.fontSize = "30px";

Explanation:

●​ The heading’s color and font size are changed when the script runs.​

Adding and Removing Classes
let heading = document.getElementById("main-title");
heading.classList.add("highlight");
heading.classList.remove("highlight");

Explanation:

●​ Classes can be added or removed to change styles or behavior.​

Creating Elements
let newParagraph = document.createElement("p");

newParagraph.textContent = "This is a new paragraph!";
document.body.appendChild(newParagraph);

Explanation:

●​ A new paragraph element is created and added at the end of the webpage.​

5. Events: Responding to User Actions
JavaScript becomes powerful when it responds to events like clicks, typing, and scrolling.

Common Events

Event Type Description

click When an element is clicked

input When user types in a form

change When form values change

mouseover When the mouse hovers over an
element

keydown When a key is pressed

Example – Button Click
<button id="clickBtn">Click Me!</button>

<script>
document.getElementById("clickBtn").addEventListener("click", function() {
 alert("Button clicked!");
});
</script>

Explanation:

●​ When the button is clicked, JavaScript shows a message.​

Example – Input Field

<input type="text" id="nameInput" placeholder="Enter your name">
<button id="greetBtn">Greet</button>

<script>
document.getElementById("greetBtn").addEventListener("click", function() {
 let name = document.getElementById("nameInput").value;
 alert("Hello, " + name + "!");
});
</script>

Explanation:

●​ The user enters their name and clicks the button.​

●​ JavaScript reads the input and displays a personalized greeting.​

Example – Mouse Hover
<h2 id="hoverText">Hover over me!</h2>

<script>
document.getElementById("hoverText").addEventListener("mouseover", function() {
 this.style.color = "red";
});
</script>

Explanation:

●​ When the mouse hovers over the heading, its color changes.​

6. Form Validation Example
<form id="signupForm">
 <input type="text" id="username" placeholder="Username">

 <input type="password" id="password" placeholder="Password">

 <button type="submit">Sign Up</button>
</form>

<script>
document.getElementById("signupForm").addEventListener("submit", function(event) {
 event.preventDefault(); // Prevent form submission

 let username = document.getElementById("username").value;
 let password = document.getElementById("password").value;

 if (username === "" || password === "") {
 alert("All fields are required!");
 } else if (password.length < 6) {
 alert("Password must be at least 6 characters long.");
 } else {
 alert("Sign up successful!");
 }
});
</script>

Explanation:

●​ The form is validated before submission.​

●​ It checks if fields are filled and if the password meets requirements.​

●​ event.preventDefault() stops the form from being submitted until validation
passes.​

7. Best Practices in Writing JavaScript
1.​ Keep JavaScript Separate​

 Use external files to separate structure (HTML) from behavior (JavaScript).​

2.​ Use Meaningful Variable Names​
 Instead of x or y, use userName or userScore for clarity.​

3.​ Write Comments​
 Help yourself and others understand the code later.​

4.​ Avoid Global Variables​
 Define variables inside functions unless necessary.​

5.​ Test Your Code Frequently​
 Use browser developer tools to check for errors and debug.​

6.​ Use Functions to Reuse Code​
 Avoid repeating code by creating reusable functions.​

8. Summary
In this chapter, you have learned how JavaScript adds interactivity to your web pages. We
covered:

●​ What JavaScript is and its role in front-end development.​

●​ How to include JavaScript in HTML through inline, internal, and external methods.​

●​ JavaScript basics: variables, data types, functions, operators, conditions, and loops.​

●​ How JavaScript uses the Document Object Model (DOM) to manipulate webpage
content and styles.​

●​ How to handle events like clicks, typing, and hovering to create interactive
experiences.​

●​ Practical examples including form validation and dynamic content changes.​

●​ Best practices for writing clean, efficient, and maintainable JavaScript code.​

With these fundamentals, you are ready to create engaging web pages that respond to user
actions in real time. The next chapters will build on this foundation to explore more advanced
features and interactions.

	Chapter 2: JavaScript for the Front End
	Introduction
	1. What is JavaScript and Why Do We Need It?
	What is JavaScript?
	Why Do We Use JavaScript on the Front End?

	2. How to Include JavaScript in a Webpage
	Method 1 – Inline JavaScript
	Method 2 – Internal JavaScript
	Method 3 – External JavaScript

	3. JavaScript Basics: Syntax, Variables, and Data Types
	Comments
	Variables
	Data Types
	Operators
	Functions
	Conditional Statements
	Loops

	4. JavaScript and HTML: The Document Object Model (DOM)
	Accessing Elements
	Changing Content
	Changing Styles
	Adding and Removing Classes
	Creating Elements

	5. Events: Responding to User Actions
	Common Events
	Example – Button Click
	Example – Input Field
	Example – Mouse Hover

	6. Form Validation Example
	7. Best Practices in Writing JavaScript
	8. Summary

